RUS  ENG
Full version
JOURNALS // Algebra i logika // Archive

Algebra Logika, 2013 Volume 52, Number 5, Pages 589–600 (Mi al605)

Projections of monogenic algebras

S. S. Korobkov

Ural State Pedagogical University, ul. K. Libknekhta 9, Yekaterinburg, 620065, Russia

Abstract: Let $A$ and $B$ be associative algebras treated over a same field $F$. We say that the algebras $A$ and $B$ are lattice isomorphic if their subalgebra lattices $L(A)$ and $L(B)$ are isomorphic. An isomorphism of the lattice $L(A)$ onto the lattice $L(B)$ is called a projection of the algebra $A$ onto the algebra $B$. The algebra $B$ is called a projective image of the algebra $A$. We give a description of projective images of monogenic algebraic algebras. The description, in particular, implies that the monogeneity of algebraic algebras treated over a field of characteristic 0 is preserved under projections. Also we give an account of all monogenic algebraic algebras for which a projective image of the radical is not equal to the radical of a projective image.

Keywords: monogenic algebraic algebras, lattice isomorphisms of associative algebras.

UDC: 512.552

Received: 14.11.2012
Revised: 11.10.2013


 English version:
Algebra and Logic, 2013, 52:5, 392–399

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024