RUS  ENG
Full version
JOURNALS // Algebra i logika // Archive

Algebra Logika, 2014 Volume 53, Number 1, Pages 26–44 (Mi al622)

This article is cited in 3 papers

Heritability of the property $\mathcal D_\pi$ by overgroups of $\pi$-Hall subgroups in the case where $2\in\pi$

N. Ch. Manzaeva

Novosibirsk State University, ul. Pirogova 2, Novosibirsk, 630090, Russia

Abstract: Let $\pi$ be a set of prime numbers. We say that a finite group $G$ is a $\mathcal D_\pi$-group if all of its maximal $\pi$-subgroups are conjugate. Question 17.44(b) in Unsolved Problems in Group Theory, The Kourovka Notebook, asks whether an overgroup of a $\pi$-Hall subgroup of a $\mathcal D_\pi$-group is always a $\mathcal D_\pi$-group. We give an affirmative answer to this question in the case where $2\in\pi$.

Keywords: finite group, $\pi$-Hall subgroup, $\mathcal D_\pi$-group, group of Lie type, finite simple group, maximal subgroup of odd index.

UDC: 512.542

Received: 07.09.2013
Revised: 24.12.2013


 English version:
Algebra and Logic, 2014, 53:1, 17–28

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024