RUS  ENG
Full version
JOURNALS // Algebra i logika // Archive

Algebra Logika, 2014 Volume 53, Number 1, Pages 45–59 (Mi al623)

This article is cited in 1 paper

Existentially closed subgroups of free nilpotent groups

V. A. Roman'kovab, N. G. Khisamievc

a Dostoevskii Omsk State University, pr. Mira 55-A, Omsk, 644077, Russia
b Omsk State Technical University, pr. Mira 11, Omsk, 644050, Russia
c Serikbaev East Kazakhstan State Technical University, ul. Serikbaeva 19, Ust-Kamenogorsk, 070010, Kazakhstan

Abstract: Let $\mathcal N_c$ be a variety of all nilpotent groups of class at most $c$, and let $N_{r,c}$ be a free nilpotent group of finite rank $r$ and nilpotency class $c$. It is proved that a subgroup $N$ of $N_{r,c}$ for $c\ge3$ is existentially closed in $N_{r,c}$ iff $N$ is a free factor of the group $N_{r,c}$ with respect to the variety $\mathcal N_c$. Consequently, $N\simeq N_{m,c}$, $1\le m\le r$ and $m\ge c-1$.

Keywords: existentially closed subgroup, free nilpotent group, discriminating extension.

UDC: 512.54

Received: 23.06.2013
Revised: 04.11.2013


 English version:
Algebra and Logic, 2014, 53:1, 29–38

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024