Algebra Logika, 2014 Volume 53, Number 5, Pages 570–586
(Mi al651)
|
This article is cited in
9 papers
Groups whose element orders do not exceed 6
D. V. Lytkinaab,
V. D. Mazurovca,
A. S. Mamontovca,
E. Jabarad a Novosibirsk State University, ul. Pirogova 2, Novosibirsk, 630090, Russia
b Siberian State University of Telecommunications and Information Sciences, ul. Kirova 86, Novosibirsk, 630102, Russia
c Sobolev Institute of Mathematics, pr. Akad. Koptyuga 4, Novosibirsk, 630090, Russia
d Dipartimento di Filosofia e Beni Culturali, Università di Ca' Foscari, Dorsoduro 3484/d, I-30123 Venezia, Italy
Abstract:
It is proved that a periodic group whose element orders do not exceed 6 either is a locally finite or is group of exponent 5.
Keywords:
periodic group, locally finite group.
UDC:
512.54 Received: 18.08.2014
© , 2025