RUS  ENG
Full version
JOURNALS // Algebra i logika // Archive

Algebra Logika, 2014 Volume 53, Number 6, Pages 704–709 (Mi al661)

This article is cited in 1 paper

Separant of an arbitrary polynomial

Yu. L. Ershovab

a Novosibirsk State University, ul. Pirogova 2, Novosibirsk, 630090, Russia
b Sobolev Institute of Mathematics, pr. Akad. Koptyuga 4, Novosibirsk, 630090, Russia

Abstract: Let $f$ be a unitary polynomial over $F$. Previously, the concept of a separant of a polynomial $f$ was defined for the case where f has no multiple roots. The notion of a separant turned out to be very useful for generalizations of Hensel's lemma. We propose a generalization of this concept to the case where a polynomial may have multiple roots. This allows us to extend Hensel's lemma to this case as well.

Keywords: separant of polynomial, Hensel's lemma.

UDC: 512.623.4

Received: 01.10.2014


 English version:
Algebra and Logic, 2015, 53:6, 458–462

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025