RUS  ENG
Full version
JOURNALS // Algebra i logika // Archive

Algebra Logika, 2015 Volume 54, Number 1, Pages 16–33 (Mi al672)

This article is cited in 10 papers

Projections of Galois rings

S. S. Korobkov

Ural State Pedagogical University, ul. K. Libknekhta 9, Yekaterinburg, 620065, Russia

Abstract: Let $R$ and $R^\varphi$ be associative rings with isomorphic subring lattices and $\varphi$ be a lattice isomorphism (a projection) of the ring $R$ onto the ring $R^\varphi$. We call $R^\varphi$ the projective image of a ring $R$ and call the ring $R$ itself the projective preimage of a ring $R^\varphi$. We study lattice isomorphisms of Galois rings. By a Galois ring we mean a ring $GR(p^n,m)$ isomorphic to the factor ring $K[x]/(f(x))$, where $K=Z/p^nZ$, $p$ is a prime, $f(x)$ is a polynomial of degree $m$ irreducible over $K$, and $(f(x))$ is a principal ideal generated by the polynomial $f(x)$ in the ring $K[x]$. Properties of the lattice of subrings of a Galois ring depend on values of numbers $n$ and $m$. A subring lattice $L$ of $GR(p^n,m)$ has the simplest structure for $m=1$ ($L$ is a chain) and for $n=1$ ($L$ is distributive). It turned out that only in these cases there are examples of projections of Galois ring onto rings that are not Galois rings. We prove the following:
THEOREM. Let $R=GR(p^n,q^m)$, where $n>1$ and $m>1$. Then $R^\varphi\cong R$.

Keywords: Galois rings, lattice isomorphisms of associative rings.

UDC: 512.552

Received: 06.11.2013

DOI: 10.17377/alglog.2015.54.102


 English version:
Algebra and Logic, 2015, 54:1, 10–22

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025