RUS  ENG
Full version
JOURNALS // Algebra i logika // Archive

Algebra Logika, 2015 Volume 54, Number 1, Pages 16–33 (Mi al672)

This article is cited in 9 papers

Projections of Galois rings

S. S. Korobkov

Ural State Pedagogical University, ul. K. Libknekhta 9, Yekaterinburg, 620065, Russia

Abstract: Let $R$ and $R^\varphi$ be associative rings with isomorphic subring lattices and $\varphi$ be a lattice isomorphism (a projection) of the ring $R$ onto the ring $R^\varphi$. We call $R^\varphi$ the projective image of a ring $R$ and call the ring $R$ itself the projective preimage of a ring $R^\varphi$. We study lattice isomorphisms of Galois rings. By a Galois ring we mean a ring $GR(p^n,m)$ isomorphic to the factor ring $K[x]/(f(x))$, where $K=Z/p^nZ$, $p$ is a prime, $f(x)$ is a polynomial of degree $m$ irreducible over $K$, and $(f(x))$ is a principal ideal generated by the polynomial $f(x)$ in the ring $K[x]$. Properties of the lattice of subrings of a Galois ring depend on values of numbers $n$ and $m$. A subring lattice $L$ of $GR(p^n,m)$ has the simplest structure for $m=1$ ($L$ is a chain) and for $n=1$ ($L$ is distributive). It turned out that only in these cases there are examples of projections of Galois ring onto rings that are not Galois rings. We prove the following:
THEOREM. Let $R=GR(p^n,q^m)$, where $n>1$ and $m>1$. Then $R^\varphi\cong R$.

Keywords: Galois rings, lattice isomorphisms of associative rings.

UDC: 512.552

Received: 06.11.2013

DOI: 10.17377/alglog.2015.54.102


 English version:
Algebra and Logic, 2015, 54:1, 10–22

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024