RUS  ENG
Full version
JOURNALS // Algebra i logika // Archive

Algebra Logika, 2015 Volume 54, Number 2, Pages 137–157 (Mi al684)

The branching theorem and computable categoricity in the Ershov hierarchy

N. A. Bazhenovab

a Sobolev Institute of Mathematics, pr. Akad. Koptyuga 4, Novosibirsk, 630090, Russia
b Novosibirsk State University, ul. Pirogova 2, Novosibirsk, 630090, Russia

Abstract: Computable categoricity in the Ershov hierarchy is studied. We consider $F_a$- and $G_a$-categorical structures. These were introduced by B. Khoussainov, F. Stephan, and Y. Yang for $a$, which is a notation for a constructive ordinal. A generalization of the branching theorem is proved for $F_a$-categorical structures. As a consequence we obtain a description of $F_a$-categorical structures for classes of Boolean algebras and Abelian $p$-groups. Furthermore, it is shown that the branching theorem cannot be generalized to $G_a$-categorical structures.

Keywords: computable categoricity, Ershov hierarchy, $F_a$-categoricity, $G_a$-categoricity, branching structure.

UDC: 510.5

Received: 04.11.2013
Revised: 06.02.2015

DOI: 10.17377/alglog.2015.54.201


 English version:
Algebra and Logic, 2015, 54:2, 91–104

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024