RUS  ENG
Full version
JOURNALS // Algebra i logika // Archive

Algebra Logika, 2015 Volume 54, Number 2, Pages 236–242 (Mi al689)

How to find (compute) a separant

Yu. L. Ershovab

a Sobolev Institute of Mathematics, pr. Akad. Koptyuga 4, Novosibirsk, 630090, Russia
b Novosibirsk State University, ul. Pirogova 2, Novosibirsk, 630090, Russia

Abstract: Let $f$ be an arbitrary (unitary) polynomial over a valued field $\mathbb F=\langle F,R\rangle$. In [Algebra i Logika, 53, No. 6, 704–709 (2014)], a separant $\sigma_f$ of such a polynomial was defined to be an element of a value group $\Gamma_{R_0}$ for any algebraically closed extension $\mathbb F_0=\langle F_0,R_0\rangle\ge\mathbb F$. Specifically, the separant was used to obtain a generalization of Hensel's lemma. We show a more algebraic way (compared to the previous) for finding a separant.

Keywords: valued field, separant, Hensel's lemma.

UDC: 512.623.4

Received: 02.04.2015

DOI: 10.17377/alglog.2015.54.206


 English version:
Algebra and Logic, 2015, 54:2, 155–160

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025