RUS  ENG
Full version
JOURNALS // Algebra i logika // Archive

Algebra Logika, 2015 Volume 54, Number 2, Pages 243–251 (Mi al690)

This article is cited in 16 papers

Infinite groups of finite period

V. D. Mazurovab, A. Yu. Ol'shanskiic, A. I. Sozutovde

a Sobolev Institute of Mathematics, pr. Akad. Koptyuga 4, Novosibirsk, 630090, Russia
b Novosibirsk State University, ul. Pirogova 2, Novosibirsk, 630090, Russia
c 1326 Stevenson Center, Vanderbilt University, Nashville, TN 37240, USA
d Siberian Federal University, pr. Svobodnyi 79, Krasnoyarsk, 660041, Russia
e Reshetnev Siberian State Aerospace University, pr. Gazety Krasnoyarskii Rabochii 31, Krasnoyarsk, 660037, Russia

Abstract: It is proved that there exist periodic groups containing an element of even order and only trivial normal $2$-subgroups in which every pair of involutions generates a $2$-group. This gives a negative answer to Question 11.11a in the Kourovka Notebook. Furthermore, we point out examples of finite simple groups that are recognizable by spectrum in the class of finite groups but not recognizable in the class of all groups.

Keywords: periodic group, periodic product, spectrum of group, recognizability by spectrum, Baire–Suzuki theorem, modular group.

UDC: 512.542

Received: 02.01.2015

DOI: 10.17377/alglog.2015.54.207


 English version:
Algebra and Logic, 2015, 54:2, 161–166

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025