RUS  ENG
Full version
JOURNALS // Algebra i logika // Archive

Algebra Logika, 2015 Volume 54, Number 3, Pages 326–350 (Mi al697)

On $\Pi$-property and $\Pi$-normality of subgroups of finite groups. II

B. Lia, T. Foguelb

a College Appl. Math., Chengdu Univ. Inform. Technology, Chengdu Sichuan 610225, P. R. China
b Dep. Math. Comput. Sci., Western Carolina Univ., Cullowhee, NC, 28723 USA

Abstract: Let $H$ be a subgroup of a group $G$. We say that $H$ satisfies the $\Pi$-property in $G$ if $|G/K:N_{G/K}(HK/K\cap L/K)|$ is a $\pi(HK/K\cap L/K)$-number for any chief factor $L/K$ of $G$. If there is a subnormal supplement $T$ of $H$ in $G$ such that $H\cap T\le I\le H$ for some subgroup $I$ satisfying the $\Pi$-property in $G$, then $H$ is said to be $\Pi$-normal in $G$. Using these properties that hold for some subgroups, we derive new $p$-nilpotency criteria for finite groups.

Keywords: finite group, $\Pi$-property, $\Pi$-normal subgroup, $p$-nilpotency.

UDC: 512.542

Received: 03.12.2013

DOI: 10.17377/alglog.2015.54.303


 English version:
Algebra and Logic, 2015, 54:3, 211–225

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024