RUS  ENG
Full version
JOURNALS // Algebra i logika // Archive

Algebra Logika, 2015 Volume 54, Number 3, Pages 351–380 (Mi al698)

This article is cited in 1 paper

$\mathfrak F_\tau$-embedded and $\mathfrak F_{\tau,\Phi}$-embedded subgroups of finite groups

X. Chena, W. Guoa, A. N. Skibab

a University of Science and Technology of China, Hefei, 230026, P. R. China
b F. Skorina Gomel State University, Gomel, 246019, Belarus

Abstract: Let $\mathfrak F$ be a nonempty formation of groups, $\tau$ a subgroup functor, and $H$$p$-subgroup of a finite group $G$. Suppose also that $\bar G=G/H_G$ and $\bar H=H/H_G$. We say that $H$ is $\mathfrak F_\tau$-embedded ($\mathfrak F_{\tau,\Phi}$-embedded) in $G$ if, for some quasinormal subgroup $\bar T$ of $\bar G$ and some $\tau$-subgroup $\bar S$ of $\bar G$ contained in $\bar H$, the subgroup $\bar H\bar T$ is $S$-quasinormal in $\bar G$ and $\bar H\cap\bar T\le\bar SZ_\mathfrak F(\bar G)$ (resp., $\bar H\cap\bar T\le\bar SZ_{\mathfrak F,\Phi}(\bar G)$). Using the notions of $\mathfrak F_\tau$-embedded and $\mathfrak F_{\tau,\Phi}$-embedded subgroups, we give some characterizations of the structure of finite groups. A number of earlier concepts and related results are further developed and unified.

Keywords: finite group, subgroup functor, $\mathfrak F_\tau$-embedded subgroup, $\mathfrak F_{\tau,\Phi}$-embedded subgroup, supersoluble group.

UDC: 512.54+512.57

Received: 16.01.2014
Revised: 08.05.2015

DOI: 10.17377/alglog.2015.54.304


 English version:
Algebra and Logic, 2015, 54:3, 226–244

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024