RUS  ENG
Full version
JOURNALS // Algebra i logika // Archive

Algebra Logika, 2015 Volume 54, Number 4, Pages 520–528 (Mi al708)

This article is cited in 11 papers

Index sets for $n$-decidable structures categorical relative to $m$-decidable presentations

E. B. Fokinaa, S. S. Goncharovbc, V. Harizanovd, O. V. Kudinovbc, D. Turetskye

a Vienna University of Technology, Institute of Discrete Mathematics and Geometry, Wiedner Hauptstrase 8-10/104, 1040, Vienna, Austria
b Sobolev Institute of Mathematics, pr. Akad. Koptyuga 4, Novosibirsk, 630090, Russia
c Novosibirsk State University, ul. Pirogova 2, Novosibirsk, 630090, Russia
d George Washington Univ, Washington, DC, 20052, USA
e Kurt Gödel Research Center for Mathematical Logic, University of Vienna, Währinger Strase 25, 1090, Vienna, Austria

Abstract: We say that a structure is categorical relative to $n$-decidable presentations (or autostable relative to $n$-constructivizations) if any two $n$-decidable copies of the structure are computably isomorphic. For $n=0$, we have the classical definition of a computably categorical (autostable) structure. Downey, Kach, Lempp, Lewis, Montalbán, and Turetsky proved that there is no simple syntactic characterization of computable categoricity. More formally, they showed that the index set of computably categorical structures is $\Pi^1_1$-complete.
We study index sets of $n$-decidable structures that are categorical relative to $m$-decidable presentations, for various $m,n\in\omega$. If $m\ge n\ge0$, then the index set is again $\Pi^1_1$-complete, i.e., there is no nice description of the class of $n$-decidable structures that are categorical relative to $m$-decidable presentations. In the case $m=n-1\ge0$, the index set is $\Pi^0_4$-complete, while if $0\le m\le n-2$, the index set is $\Sigma^0_3$-complete.

Keywords: index set, structure categorical relative to $n$-decidable presentations, $n$-decidable structure categorical relative to $m$-decidable presentations.

UDC: 510.53

Received: 12.09.2015

DOI: 10.17377/alglog.2015.54.407


 English version:
Algebra and Logic, 2015, 54:4, 336–341

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025