RUS  ENG
Full version
JOURNALS // Algebra i logika // Archive

Algebra Logika, 2016 Volume 55, Number 1, Pages 37–57 (Mi al728)

This article is cited in 13 papers

Definability of linear orders over negative equivalences

N. Kh. Kasymova, A. S. Morozovbc

a Ulugbek National University of Uzbekistan, Universitetskaya 4, Tashkent, 100174 Uzbekistan
b Sobolev Institute of Mathematics, pr. Akad. Koptyuga 4, Novosibirsk, 630090 Russia
c Novosibirsk State University, ul. Pirogova 2, Novosibirsk, 630090 Russia

Abstract: We study linear orders definable over negative and positive equivalences and their computable automorphisms. Special attention is paid to equivalences like $\eta(\alpha)=\alpha^2\cup\mathrm{id}_\omega$, $\alpha\subseteq\omega$. In particular, we describe orders that have negative presentations over such equivalences for co-enumerable sets $\alpha$. Presentable and nonpresentable order types are exemplified for equivalences with various extra properties. We also give examples of negative orders with computable automorphisms whose inverses are not computable.

Keywords: linear order, negative equivalence, computable automorphism.

UDC: 510.5

Received: 12.11.2014
Revised: 18.05.2015

DOI: 10.17377/alglog.2016.55.103


 English version:
Algebra and Logic, 2016, 55:1, 24–37

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025