RUS  ENG
Full version
JOURNALS // Algebra i logika // Archive

Algebra Logika, 2016 Volume 55, Number 2, Pages 133–155 (Mi al735)

This article is cited in 15 papers

Degrees of autostability relative to strong constructivizations for Boolean algebras

N. A. Bazhenovabc

a Sobolev Institute of Mathematics, pr. Akad. Koptyuga 4, Novosibirsk, 630090 Russia
b Novosibirsk State University, ul. Pirogova 2, Novosibirsk, 630090 Russia
c Kazan (Volga Region) Federal University, ul. Kremlevskaya 18, Kazan, 420008 Russia

Abstract: It is proved that for every computable ordinal $\alpha$, the Turing degree $\mathbf0^{(\alpha)}$ is a degree of autostability of some computable Boolean algebra and is also a degree of autostability relative to strong constructivizations for some decidable Boolean algebra. It is shown that a Harrison Boolean algebra has no degree of autostability relative to strong constructivizations. It is stated that the index set of decidable Boolean algebras having degree of autostability relative to strong constuctivizations is $\Pi^1_1$–complete.

Keywords: autostability, Boolean algebra, autostability relative to strong constructivizations, degree of autostability, degree of categoricity, index set.

UDC: 512.563+510.5

Received: 07.05.2014
Revised: 03.12.2015

DOI: 10.17377/alglog.2016.55.201


 English version:
Algebra and Logic, 2016, 55:2, 87–102

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024