RUS  ENG
Full version
JOURNALS // Algebra i logika // Archive

Algebra Logika, 2016 Volume 55, Number 2, Pages 156–191 (Mi al736)

This article is cited in 2 papers

Free-variable semantic tableaux for the logic of fuzzy inequalities

A. S. Gerasimov

St. Petersburg State University, Universitetskii pr. 28, St. Petersburg, 198504 Russia

Abstract: We present a free-variable tableau calculus for the logic of fuzzy inequalities F$\forall$, which is an extension of infinite-valued first-order Lukasiewicz logic Ł$\forall$. The set of all Ł$\forall$-sentences provable in the hypersequent calculus of Baaz and Metcalfe for Ł$\forall$ is embedded into the set of all F$\forall$-sentences provable in the given tableau calculus. We prove NP-completeness of the problem of checking tableau closability and propose an algorithm, which is based on unification, for solving the problem.

Keywords: fuzzy logic, infinite-valued first-order Lukasiewicz logic, automatic proof search, hypersequent calculus, tableau calculus, tableau closability, NP-complete problem.

UDC: 510.644

Received: 26.06.2014
Revised: 21.10.2015

DOI: 10.17377/alglog.2016.55.202


 English version:
Algebra and Logic, 2016, 55:2, 103–127

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024