RUS  ENG
Full version
JOURNALS // Algebra i logika // Archive

Algebra Logika, 2016 Volume 55, Number 3, Pages 366–379 (Mi al746)

This article is cited in 5 papers

A sufficient condition for nonpresentability of structures in hereditarily finite superstructures

A. S. Morozovab

a Sobolev Institute of Mathematics, pr. Akad. Koptyuga 4, Novosibirsk, 630090 Russia
b Novosibirsk State University, ul. Pirogova 2, Novosibirsk, 630090 Russia

Abstract: We introduce a class of existentially Steinitz structures containing, in particular, the fields of real and complex numbers. A general result is proved which implies that if $\mathfrak M$ is an existentially Steinitz structure then the following structures cannot be embedded in any structure $\Sigma$-presentable with trivial equivalence over $\mathbb{HF}(\mathfrak M)$: the Boolean algebra of all subsets of $\omega$, its factor modulo the ideal consisting of finite sets, the group of all permutations on $\omega$, its factor modulo the subgroup of all finitary permutations, the semigroup of all mappings from $\omega$ to $\omega$, the lattice of all open sets of real numbers, the lattice of all closed sets of real numbers, the group of all permutations of $\mathbb R$ $\Sigma$-definable with parameters over $\mathbb{HF(R)}$, and the semigroup of such mappings from $\mathbb R$ to $\mathbb R$.

Keywords: existentially Steinitz structure, hereditarily finite superstructure, $\Sigma$-presentability.

UDC: 510.65

Received: 09.10.2014
Revised: 09.10.2015

DOI: 10.17377/alglog.2016.55.305


 English version:
Algebra and Logic, 2016, 55:3, 242–251

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025