RUS  ENG
Full version
JOURNALS // Algebra i logika // Archive

Algebra Logika, 2005 Volume 44, Number 1, Pages 54–69 (Mi al75)

This article is cited in 11 papers

A characterization of alternating groups

V. D. Mazurov

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences

Abstract: It is proved that a group $G$ generated by a conjugacy class $X$ of elements of order 3, so that every two non-commuting elements of $X$ generate a subgroup isomorphic to an alternating group of degree 4 or 5, is locally finite. More precisely, either $G$ contains a normal elementary 2-subgroup of index 3, or $G$ is isomorphic to an alternating group of permutations on some (possibly infinite) set.

Keywords: alternating group, locally finite group.

UDC: 512.5

Received: 18.02.2004


 English version:
Algebra and Logic, 2005, 44:1, 31–39

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025