RUS  ENG
Full version
JOURNALS // Algebra i logika // Archive

Algebra Logika, 2017 Volume 56, Number 3, Pages 317–347 (Mi al794)

This article is cited in 4 papers

Constants of partial derivations and primitive operations

S. V. Pchelintsevab, I. P. Shestakovacd

a Sobolev Institute of Mathematics, pr. Akad. Koptyuga 4, Novosibirsk, 630090 Russia
b Finance Academy under the Government of the Russian Federation, Leningradskii pr. 49, Moscow, 125993 Russia
c Novosibirsk State University, ul. Pirogova 1, Novosibirsk, 630090 Russia
d Universidade de São Paulo, São Paulo-SEP, 05315-970 Basil

Abstract: We describe algebras of constants of the set of all partial derivations in free algebras of unitarily closed varieties over a field of characteristic 0. These constants are also called eigenpolynomials.
It is proved that a subalgebra of eigenpolynomials coincides with the subalgebra generated by values of commutators and Umirbaev–Shestakov primitive elements $p_{m,n}$ on a set of generators for a free algebra.
The space of primitive elements is a linear algebraic system over a signature $\Sigma=\{[x,y],p_{m,n}\mid m,n\ge1\}$. We point out bases of operations of the set $\Sigma$ in the classes of all algebras, all commutative algebras, right alternative and Jordan algebras.

Keywords: primitive operations, eigenpolynomials, free algebras.

UDC: 512.554.5

Received: 26.01.2016

DOI: 10.17377/alglog.2017.56.303


 English version:
Algebra and Logic, 2017, 56:3, 210–231

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025