RUS  ENG
Full version
JOURNALS // Algebra i logika // Archive

Algebra Logika, 2017 Volume 56, Number 4, Pages 395–405 (Mi al804)

This article is cited in 1 paper

Automorphism groups of small distance-regular graphs

I. N. Belousov, A. A. Makhnev

Krasovskii Institute of Mathematics and Mechanics, Ural Branch, Russian Academy of Sciences, ul. S. Kovalevskoi 16, Yekaterinburg, 620990 Russia

Abstract: We consider undirected graphs without loops and multiple edges. Previously, V. P. Burichenko and A. A. Makhnev [Modern Problems in Mathematics: Proc. 42nd All-Russian School–Conference of Young Scientists, Yekaterinburg, Institute of Mathematics and Mechanics, UB RAS, 2011, 181–183] found intersection arrays of distance-regular locally cyclic graphs with the number of vertices at most 1000. It is shown that the automorphism group of a graph with intersection array $\{15,12,1;1,2,15\}$, $\{35,32,1;1,2,35\}$, $\{39,36,1;1,2,39\}$ or $\{42,39,1;1,3,42\}$ (such a graph enters the above-mentioned list) acts intransitively on the set of its vertices.

Keywords: distance-regular graph, locally cyclic graph, intersection array, automorphism group.

UDC: 519.17+512.54

Received: 27.02.2015
Revised: 29.09.2016

DOI: 10.17377/alglog.2017.56.401


 English version:
Algebra and Logic, 2017, 56:4, 261–268

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025