RUS  ENG
Full version
JOURNALS // Algebra i logika // Archive

Algebra Logika, 2017 Volume 56, Number 4, Pages 406–420 (Mi al805)

This article is cited in 1 paper

Automorphism groups of diagonal $\mathbf Z_p$-forms of the Lie algebra $sl_2(\mathbf Q_p)$, $p>2$

A. N. Grishkovab, M. N. Rasskazovacd

a Instituto de Matemática e Estatística, Universidade de São Paulo, Postal 66281, São Paulo-SEP, BRASIL, 05311-970
b Dostoevskii Omsk State University, pr. Mira 55-A, Omsk, 644077 Russia
c Omsk State Technical University, pr. Mira 11, Omsk, 644050 Russia
d Siberian State Automobile and Highway University, pr. Mira 5, Omsk, 644080 Russia

Abstract: A. V. Yushchenko's paper [Sib. Mat. Zh., 43, No. 5, 1197–1207] implies that two nondiagonal forms like $S(n,d)+\mathbf Z_pA$ and $S(n,d)+\mathbf Z_pA'$ are isomorphic if the elements of $A$ and $A'$ are conjugated via the group $\mathrm{Aut}_{\mathbf Z_p}S(n,d)$. In the present paper, we settle just this question on conjugation. In other words, we describe the group $\mathrm{Aut}_{\mathbf Z_p}S(n,d)$ and clarify under which conditions two elements of $S(n,d)$ are conjugate under the action of this group on $S(n,d)$, $p>2$.

Keywords: Lie algebra, diagonal $\mathbf Z_p$-form, automorphism group.

UDC: 512.554.3

Received: 04.03.2016
Revised: 14.11.2016

DOI: 10.17377/alglog.2017.56.402


 English version:
Algebra and Logic, 2017, 56:4, 269–280

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024