RUS  ENG
Full version
JOURNALS // Algebra i logika // Archive

Algebra Logika, 2017 Volume 56, Number 4, Pages 486–505 (Mi al810)

This article is cited in 2 papers

$P$-stable polygons

A. A. Stepanovaab, D. O. Ptakhova

a School of Natural Sciences, Far Eastern Federal University, ul. Sukhanova 8, Vladivostok, 690091 Russia
b Institute of Applied Mathematics, ul. Radio 7, Vladivostok, 690041 Russia

Abstract: $P$-stable polygons are studied. It is proved that the property of being $(P,s)$-, $(P,a)$-, and $(P,e)$-stable for the class of all polygons over a monoid $S$ is equivalent to $S$ being a group. We describe the structure of $(P,s)$-, $(P,a)$-, and $(P,e)$-stable polygons $SA$ over a countable left-zero monoid $S$ under the condition that the set $A\setminus SA$ is indiscernible over a right-zero monoid.

Keywords: $P$-stable theories, polygons, $P$-stable polygons.

UDC: 510.67+512.56

Received: 14.12.2015

DOI: 10.17377/alglog.2017.56.407


 English version:
Algebra and Logic, 2017, 56:4, 324–336

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025