RUS  ENG
Full version
JOURNALS // Algebra i logika // Archive

Algebra Logika, 2017 Volume 56, Number 6, Pages 671–681 (Mi al823)

Automorphism group of a distanceregular graph with intersection array $\{35,32,1;1,4,35\}$

V. V. Bitkinaa, A. A. Makhnevb

a Khetagurov North Ossetian State University, ul. Vatutina 46, Vladikavkaz, 362025 Russia
b Krasovskii Institute of Mathematics and Mechanics, Ural Branch, Russian Academy of Sciences, ul. S. Kovalevskoi 16, Yekaterinburg, 620990 Russia

Abstract: Let $\Gamma$ be a distance regular graph with intersection array $\{35,32,1;1,4,35\}$ and let $G=\operatorname{Aut}(\Gamma)$ act transitively on the set of vertices of the graph $\Gamma$. It is shown that $G$ is a $\{2,3\}$-group.

Keywords: distance-regular graph, itersection array, automorphism group.

UDC: 519.17+512.54

Received: 27.01.2016
Revised: 20.10.2016

DOI: 10.17377/alglog.2017.56.602


 English version:
Algebra and Logic, 2018, 56:6, 443–450

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025