RUS
ENG
Full version
JOURNALS
// Algebra i logika
// Archive
Algebra Logika,
2017
Volume 56,
Number 6,
Pages
671–681
(Mi al823)
Automorphism group of a distanceregular graph with intersection array
$\{35,32,1;1,4,35\}$
V. V. Bitkina
a
,
A. A. Makhnev
b
a
Khetagurov North Ossetian State University, ul. Vatutina 46, Vladikavkaz, 362025 Russia
b
Krasovskii Institute of Mathematics and Mechanics, Ural Branch, Russian Academy of Sciences, ul. S. Kovalevskoi 16, Yekaterinburg, 620990 Russia
Abstract:
Let
$\Gamma$
be a distance regular graph with intersection array
$\{35,32,1;1,4,35\}$
and let
$G=\operatorname{Aut}(\Gamma)$
act transitively on the set of vertices of the graph
$\Gamma$
. It is shown that
$G$
is a
$\{2,3\}$
-group.
Keywords:
distance-regular graph, itersection array, automorphism group.
UDC:
519.17
+
512.54
Received: 27.01.2016
Revised: 20.10.2016
DOI:
10.17377/alglog.2017.56.602
Fulltext:
PDF file (176 kB)
References
English version:
Algebra and Logic, 2018,
56
:6,
443–450
Bibliographic databases:
©
Steklov Math. Inst. of RAS
, 2025