RUS  ENG
Full version
JOURNALS // Algebra i logika // Archive

Algebra Logika, 2017 Volume 56, Number 6, Pages 712–720 (Mi al826)

This article is cited in 2 papers

Polygons with a (P, 1)-stable theory

D. O. Ptakhov

School of Natural Sciences, Far Eastern Federal University, ul. Sukhanova 8, Vladivostok, 690091 Russia

Abstract: Polygons with a $(P,1)$-stable theory are considered. A criterion of being $(P,1)$-stable for a polygon is established. As a consequence of the main criterion we prove that a polygon $_SS$, where $S$ is a group, is $(P,1)$-stable if and only if $S$ is a finite group. It is shown that the class of all polygons with monoid $S$ is $(P,1)$-stable only if $S$ is a one-element monoid. $(P,1)$-stability criteria are presented for polygons over right and left zero monoids.

Keywords: $(P,1)$-stable theories, polygons, $(P,1)$-stable polygons.

UDC: 510.67+512.56

Received: 14.12.2015

DOI: 10.17377/alglog.2017.56.605


 English version:
Algebra and Logic, 2018, 56:6, 473–478

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025