RUS  ENG
Full version
JOURNALS // Algebra i logika // Archive

Algebra Logika, 2018 Volume 57, Number 1, Pages 73–101 (Mi al836)

This article is cited in 10 papers

Separability of Schur rings over Abelian $p$-groups

G. K. Ryabov

Novosibirsk State University, ul. Pirogova 1, Novosibirsk, 630090 Russia

Abstract: A Schur ring (an $S$-ring) is said to be separable if each of its algebraic isomorphisms is induced by an isomorphism. Let $C_n$ be the cyclic group of order $n$. It is proved that all $S$-rings over groups $D=C_p\times C_{p^k}$, where $p\in\{2,3\}$ and $k\ge1$, are separable with respect to a class of $S$-rings over Abelian groups. From this statement, we deduce that a given Cayley graph over $D$ and a given Cayley graph over an arbitrary Abelian group can be checked for isomorphism in polynomial time with respect to $|D|$.

Keywords: Cayley graphs, Cayley graph isomorphism problem, Cayley schemes, Schur rings, permutation groups.

UDC: 512.542.3+519.178

Received: 07.04.2017
Revised: 07.08.2017

DOI: 10.17377/alglog.2018.57.105


 English version:
Algebra and Logic, 2018, 57:1, 49–68

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024