RUS  ENG
Full version
JOURNALS // Algebra i logika // Archive

Algebra Logika, 2018 Volume 57, Number 3, Pages 279–284 (Mi al849)

This article is cited in 5 papers

Positive preorders

D. K. Kabylzhanova

Al-Farabi Kazakh National University, Al-Farabi Ave. 71, Alma-Ata, 050038 Kazakhstan

Abstract: We consider positive preorders, i.e., computably enumerable equivalences, endowed with the structure of a partial order between equivalence classes. On positive preorders, a computable reducibility relation and the corresponding notion of degree of a positive preorder are introduced in the natural way. It is proved that the degree of any positive preorder contains either exactly one computable isomorphism class or an infinite set of computable isomorphism classes.

Keywords: computably enumerable equivalence, computable reducibility, computable isomorphism classes.

UDC: 510.54

Received: 09.01.2017
Revised: 22.05.2017

DOI: 10.17377/alglog.2018.57.302


 English version:
Algebra and Logic, 2018, 57:3, 182–185

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024