RUS  ENG
Full version
JOURNALS // Algebra i logika // Archive

Algebra Logika, 2018 Volume 57, Number 4, Pages 389–425 (Mi al856)

This article is cited in 12 papers

Categoricity for primitive recursive and polynomial Boolean algebras

P. E. Alaevab

a Sobolev Institute of Mathematics, pr. Akad. Koptyuga 4, Novosibirsk, 630090 Russia
b Novosibirsk State University, ul. Pirogova 1, Novosibirsk, 630090 Russia

Abstract: We define a class $\mathbb K_\Sigma$ of primitive recursive structures whose existential diagram is decidable with primitive recursive witnesses. It is proved that a Boolean algebra has a presentation in $\mathbb K_\Sigma$ iff it has a computable presentation with computable set of atoms. Moreover, such a Boolean algebra is primitive recursively categorical with respect to $\mathbb K_\Sigma$ iff it has finitely many atoms. The obtained results can also be carried over to Boolean algebras computable in polynomial time.

Keywords: Boolean algebra, Boolean algebra computable in polynomial time, computable presentation, primitive recursively categorical Boolean algebra.

UDC: 510.52+512.563+510.67

Received: 10.05.2017
Revised: 03.09.2018

DOI: 10.17377/alglog.2018.57.401


 English version:
Algebra and Logic, 2018, 57:4, 251–274

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025