RUS  ENG
Full version
JOURNALS // Algebra i logika // Archive

Algebra Logika, 2019 Volume 58, Number 2, Pages 210–228 (Mi al891)

This article is cited in 2 papers

The interpolation problem in finite-layered pre-Heyting logics

L. L. Maksimovaab, V. F. Yunab

a Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk
b Novosibirsk State University

Abstract: The interpolation problem over Johansson's minimal logic $\mathrm{ J}$ is considered. We introduce a series of Johansson algebras, which will be used to prove a number of necessary conditions for a $\mathrm{ J}$-logic to possess Craig's interpolation property $\mathrm{ (CIP)}$. As a consequence, we deduce that there exist only finitely many finite-layered pre-Heyting algebras with $\mathrm{ CIP}$.

Keywords: finite-layered pre-Heyting logic, Craig's interpolation property, Johansson algebra.

UDC: 510.64

Received: 12.03.2018
Revised: 09.07.2019

DOI: 10.33048/alglog.2019.58.205


 English version:
Algebra and Logic, 2019, 58:2, 144–157

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024