RUS  ENG
Full version
JOURNALS // Algebra i logika // Archive

Algebra Logika, 2007 Volume 46, Number 1, Pages 60–74 (Mi al9)

This article is cited in 7 papers

Asymptotic growth of averaged Dehn functions for nilpotent groups

V. A. Roman'kov

Omsk State University

Abstract: It is proved that in any finite representation of any finitely generated nilpotent group of nilpotency class $l\geqslant1$, the averaged Dehn function $\sigma(n)$ is subasymptotic w.r.t. the function $n^{l+1}$. As a consequence it is stated that in every finite representation of a free nilpotent group of nilpotency class $l$ of finite rank $r\geqslant2$, the Dehn function $\sigma(n)$ is Gromov subasymptotic.

Keywords: nilpotent group, averaged Dehn function.

UDC: 512.54

Received: 20.06.2006
Revised: 19.10.2006


 English version:
Algebra and Logic, 2007, 46:1, 37–45

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024