RUS  ENG
Full version
JOURNALS // Algebra i logika // Archive

Algebra Logika, 2019 Volume 58, Number 4, Pages 445–457 (Mi al907)

This article is cited in 2 papers

Integral Cayley graphs

W. Guoa, D. V. Lytkinabc, V. D. Mazurovcd, D. O. Revincda

a Dep. Math., Univ. Sci. Tech. China, Hefei 230026, P. R. China
b Siberian State University of Telecommunications and Informatics, Novosibirsk
c Novosibirsk State University
d Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk

Abstract: Let $G$ be a group and $S\subseteq G$ a subset such that $S=S^{-1}$, where $S^{-1}=\{s^{-1}\mid s\in S\}$. Then the Cayley graph $\mathrm{ Cay}(G,S)$ is an undirected graph $\Gamma$ with vertex set $V(\Gamma)=G$ and edge set $E(\Gamma)=\{(g,gs)\mid g\in G, s\in S\}$. For a normal subset $S$ of a finite group $G$ such that $s\in S\Rightarrow s^k\in S$ for every $k\in \mathbb{Z}$ which is coprime to the order of $s$, we prove that all eigenvalues of the adjacency matrix of $\mathrm{ Cay}(G,S)$ are integers. Using this fact, we give affirmative answers to Questions $19.50\mathrm{ (a)}$ and $19.50\mathrm{ (b)}$ in the Kourovka Notebook.

Keywords: Cayley graph, adjacency matrix of graph, spectrum of graph, integral graph, complex group algebra, character of group.

UDC: 512.542

Received: 07.08.2018
Revised: 08.11.2019

DOI: 10.33048/alglog.2019.58.401


 English version:
Algebra and Logic, 2019, 58:4, 297–305

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025