RUS  ENG
Full version
JOURNALS // Algebra i logika // Archive

Algebra Logika, 2019 Volume 58, Number 4, Pages 479–485 (Mi al910)

Associators and commutators in alternative algebras

E. Kleinfelda, I. P. Shestakovbc

a NV 89503-1719 USA
b Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk
c Universidade de São Paulo, Instituto de Matemática e Estatística

Abstract: It is proved that in a unital alternative algebra $A$ of characteristic $\neq 2$, the associator $(a,b,c)$ and the Kleinfeld function $f(a,b,c,d)$ never assume the value $1$ for any elements $a,b,c,d\in A$. Moreover, if $A$ is nonassociative, then no commutator $[a,b]$ can be equal to $1$. As a consequence, there do not exist algebraically closed alternative algebras. The restriction on the characteristic is essential, as exemplified by the Cayley–Dickson algebra over a field of characteristic $2$.

Keywords: alternative algebra, associator, commutator, Kleinfeld function.

UDC: 512.554.5

Received: 10.09.2018
Revised: 08.11.2019

DOI: 10.33048/alglog.2019.58.404


 English version:
Algebra and Logic, 2019, 58:4, 322–326

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024