RUS  ENG
Full version
JOURNALS // Algebra i logika // Archive

Algebra Logika, 2019 Volume 58, Number 5, Pages 609–626 (Mi al918)

$\Sigma$-preorderings in ${\mathbb{HF}(\mathbb{R})}$

A. S. Morozovab

a Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk
b Novosibirsk State University

Abstract: It is proved that the ordinal $\omega_1$ cannot be embedded into a preordering $\Sigma$-definable with parameters in the hereditarily finite superstructure over the real numbers. As a corollary, we obtain the descriptions of ordinals $\Sigma$-presentable over ${\mathbb{HF}(\mathbb{R})}$ and of Gödel constructive sets of the form $L_\alpha$. It is also shown that there are no $\Sigma$-presentations of structures of $T$-, $m$-, $1$- and $tt$-degrees.

Keywords: $\Sigma$-definable preordering, ordinal, hereditarily finite superstructure, real numbers.

UDC: 510.65

Received: 30.10.2018
Revised: 26.11.2019

DOI: 10.33048/alglog.2019.58.503


 English version:
Algebra and Logic, 2019, 58:5, 405–416

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025