RUS  ENG
Full version
JOURNALS // Avtomatika i Telemekhanika // Archive

Avtomat. i Telemekh., 2017 Issue 1, Pages 80–90 (Mi at14658)

This article is cited in 7 papers

System Analysis and Operations Research

Exact pseudopolynomial algorithm for one sequence partitioning problem

A. V. Kel'manovab, S. A. Khamidullina, V. I. Khandeevab

a Sobolev Institute of Mathematics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
b Novosibirsk State University, Novosibirsk, Russia

Abstract: We consider a strongly NP-hard problem of partitioning a finite sequence of vectors in a Euclidean space into two clusters of given size with the criterion of minimizing the total sum of square distances from cluster elements to their centers. The center of the first cluster is subject to optimization, defined by the mean value of all vectors in this cluster. The center of the second cluster is fixed at the origin. The partition is subject to the following condition: the difference between indices of two subsequent vectors included in the first cluster is bounded from above and below by given constants. We propose an exact pseudopolynomial algorithm for the case of a problem where the dimension of the space is fixed, and components of input vectors are integer-valued.

Keywords: partition, sequence of vectors, Euclidean space, minimal sum of squared distances, NP-hardness, exact pseudopolynomial algorithm.

Presented by the member of Editorial Board: A. A. Lazarev

Received: 12.01.2015


 English version:
Automation and Remote Control, 2017, 78:1, 67–74

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025