Abstract:
We study the dynamics of a piecewise-smooth system of differential equations for which the existence of a strange Lorenz-type attractor had been rigorously proved previously and bifurcation mechanisms of its birth had been obtained. In this work we discuss the destruction of this attractor due to the appearance of sliding motions in its structure. Using qualitative and numerical methods, we study a complex sequence of attractor bifurcations that leaves in the system a globally stable limit cycle. We show that this sequence is based on $C$-bifurcations and bifurcations of multi-loop homoclinic trajectories.