RUS  ENG
Full version
JOURNALS // Avtomatika i Telemekhanika // Archive

Avtomat. i Telemekh., 2023 Issue 1, Pages 23–62 (Mi at15862)

Nonlinear Systems

Relaxation of conditions for convergence of dynamic regressor extension and mixing procedure

A. I. Glushchenko, K. A. Lastochkin

Trapeznikov Institute of Control Sciences, Russian Academy of Sciences, Moscow, Russia

Abstract: A generalization of the dynamic regressor extension and mixing procedure is proposed, which, unlike the original procedure, first, guarantees a reduction of the unknown parameter identification error if the requirement of regressor semi-finite excitation is met, and second, it ensures exponential convergence of the regression function (regressand) tracking error to zero when the regressor is semi-persistently exciting with a rank one or higher.

Keywords: identification, linear regression, semi-finite excitation, semi-persistent excitation, parameter error, convergence, boundedness, monotonicity, singular value decomposition.

Presented by the member of Editorial Board: A. A. Bobtsov

Received: 13.12.2021
Revised: 17.06.2022
Accepted: 29.09.2022

DOI: 10.31857/S0005231023010026


 English version:
Automation and Remote Control, 2023, 84:1, 16–47


© Steklov Math. Inst. of RAS, 2025