RUS  ENG
Full version
JOURNALS // Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica // Archive

Bul. Acad. Ştiinţe Repub. Mold. Mat., 2008 Number 1, Pages 195–204 (Mi basm12)

Singularly perturbed Cauchy problem for abstract linear differential equations of second order in Hilbert spaces

A. Perjan, Galina Rusu

Department of Mathematics and Informatics, Moldova State University

Abstract: We study the behavior of solutions to the problem
$$ \begin{cases} \varepsilon\bigl(u_\varepsilon''(t)+A_1u_\varepsilon(t)\bigr)+u_\varepsilon'(t)+A_0u_\varepsilon(t)=f(t), \quad t>0,\\ u_\varepsilon(0)=u_0, \quad u_\varepsilon'=u_1, \end{cases} $$
in the Hilbert space $H$ as $\varepsilon\mapsto 0$ where $A_1$ and $A_0$ are two linear selfadjoint operators.

Keywords and phrases: Singular perturbations, Cauchy problem, boundary function.

MSC: 35B25, 35K15, 35L15, 34G10

Received: 27.12.2007

Language: English



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025