RUS  ENG
Full version
JOURNALS // Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica // Archive

Bul. Acad. Ştiinţe Repub. Mold. Mat., 2008 Number 3, Pages 44–56 (Mi basm35)

Research articles

The $GL(2,\mathbb R)$-orbits of the homogeneous polynomial differential systems

Driss Boularasa, Angela Mateib, A. Şubăc

a Département de Mathématiques, Université de Limoges
b Department of Mathematics, State University of Tiraspol, Chişinău, Moldova
c Department of Mathematics, State University of Moldova, Chişinău, Moldova

Abstract: In this work, we study the generic homogeneous polynomial differential system $\dot{x}_1= P_k(x_1, x_2)$, $\dot{x}_2=Q_k(x_1,x_2)$ under the action of the center-affine group of transformations of the phase space, $GL(2,\mathbb R)$. We show that if the dimension of the $GL(2,\mathbb R)$-orbits of this system is smaller than four, then $deg(GCD(P_k,Q_k))\geq k-1$.

Keywords and phrases: Group action, group orbits, dimension of orbits.

MSC: 34C05, 34C14

Language: English



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024