RUS  ENG
Full version
JOURNALS // Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica // Archive

Bul. Acad. Ştiinţe Repub. Mold. Mat., 2014 Number 2, Pages 51–59 (Mi basm361)

This article is cited in 1 paper

Research articles

On $2$-primal Ore extensions over Noetherian weak $\sigma$-rigid rings

Vijay Kumar Bhat

School of Mathematics, SMVD University, Katra, India-182320

Abstract: Let $R$ be a ring, $\sigma$ an endomorphism of $R$ and $\delta$$\sigma$-derivation of $R$. In this article, we discuss skew polynomial rings over $2$-primal weak $\sigma$-rigid rings. We show that if $R$ is a $2$-primal Noetherian weak $\sigma$-rigid ring, then $R[x;\sigma,\delta]$ is a $2$-primal Noetherian weak $\overline\sigma$-rigid ring.

Keywords and phrases: minimal prime, $2$-primal, prime radical, automorphism, derivation, weak $\sigma$-rigid rings.

MSC: 16S36, 16N40, 16P40, 16S32, 16W20, 16W25

Received: 25.11.2013

Language: English



© Steklov Math. Inst. of RAS, 2024