RUS  ENG
Full version
JOURNALS // Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica // Archive

Bul. Acad. Ştiinţe Repub. Mold. Mat., 2018 Number 2, Pages 30–40 (Mi basm480)

Research articles

Aspects of stability for multicriteria quadratic problems of Boolean programming

Vladimir A. Emelicheva, Yury V. Nikulinb

a Belarusian State University, Nezavisimosti 4, 220030 Minsk, Belarus
b University of Turku, Vesilinnantie 5, 20014 Turku, Finland

Abstract: We consider a multicriteria Boolean programming problem of finding the Pareto set. Partial criteria are given as quadratic functions, and they are exposed to independent perturbations. We study quantitative characteristic of stability (stability radius) of the problem. The lower and upper bounds for the stability radius are obtained in the situation where solution space and problem parameter space are endowed with various Hölder's norms.

Keywords and phrases: Boolean programming, quadratic problem, multicriteria optimization, Pareto set, stability radius, Hölder's norms.

MSC: 90C09, 90C29, 90C31

Received: 06.07.2017

Language: English



© Steklov Math. Inst. of RAS, 2024