RUS  ENG
Full version
JOURNALS // Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica // Archive

Bul. Acad. Ştiinţe Repub. Mold. Mat., 2018 Number 3, Pages 14–21 (Mi basm489)

Research articles

Transparency of Ore extensions over left $\sigma$-$(S,1)$ rings

Vijay Kumar Bhat, Pradeep Singh, Arun Dutta

School of Mathematics, SMVD University, Katra, India-182320

Abstract: Let $R$ be a ring and $\sigma$ be an endomorphism of $R$. Recall that a ring $R$ is said to be a left $\sigma$-$(S,1)$ ring if for $a,b\in R$, $ab=0$ implies that $aRb=0$ and $\sigma(a)Rb=0$. In this paper we discuss a stronger type of primary decomposition (known as transparency) of a left $\sigma$-$(S,1)$ ring $R$, and Ore extension $R[x;\sigma]$.

Keywords and phrases: automorphism, quotient ring, left $\sigma$-$(S,1)$ ring, transparent ring.

MSC: 16S36, 16N40, 16P40

Received: 03.04.2017

Language: English



© Steklov Math. Inst. of RAS, 2024