RUS  ENG
Full version
JOURNALS // Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica // Archive

Bul. Acad. Ştiinţe Repub. Mold. Mat., 2021 Number 3, Pages 72–87 (Mi basm559)

Upper bounds for the number of limit cycles for a class of polynomial differential systems via the averaging method

S. Benadouanea, A. Berbacheba, A. Bendjeddoua

a Department of Mathematics, University Ferhat Abbas Sétif
b Department of Mathematics, University of Bordj Bou Arréridj

Abstract: In this paper, we study the number of limit cycles of polynomial differential systems of the form
\begin{equation*} \left\{ \begin{array}{l} \dot{x}=y \\ \dot{y}=-x-\varepsilon (h_{1}\left( x\right) y^{2\alpha }+g_{1}\left( x\right) y^{2\alpha +1}+f_{1}\left( x\right) y^{2\alpha +2}) \\ \qquad-\varepsilon ^{2}(h_{2}\left( x\right) y^{2\alpha }+g_{2}\left( x\right) y^{2\alpha +1}+f_{2}\left( x\right) y^{2\alpha +2}) \end{array} \right. \end{equation*}
where $m,n,k$ and $\alpha $ are positive integers, $h_{i}$, $g_{i}$ and $ f_{i}$ have degree $n,m$ and $k$, respectively for each $i=1,2$, and $ \varepsilon $ is a small parameter. We use the averaging theory of first and second order to provide an accurate upper bound of the number of limit cycles that bifurcate from the periodic orbits of the linear center $\dot{x}=y,\dot{y}=-x$. We give an example for which this bound is reached.

Keywords and phrases: limit cycles, averaging theory, Liénard differential systems.

MSC: 34C07, 34C23, 37G15

Received: 28.07.2020

Language: English



© Steklov Math. Inst. of RAS, 2024