RUS  ENG
Full version
JOURNALS // Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica // Archive

Bul. Acad. Ştiinţe Repub. Mold. Mat., 2007 Number 2, Pages 33–42 (Mi basm60)

Locicaly separable algebras in varieties of algebras

B. Plotkin

Einstein Institute of Mathematics, Edmond J. Sarfa Campus, Givat Ram Hebrew University of Jerusalem, Jerusalem, Isarael

Abstract: Let $\Theta$ be an arbitrary variety of algebras and $H$ be an algebra in $\Theta$. Along with algebraic geometry in $\Theta$ over the distinguished algebra $H$ we consider logical geometry in $\Theta$ over $H$. This insight leads to a system of notions and stimulates a number of new problems. We introduce a notion of logically separable in $\Theta$ algebras and consider it in the frames of logically-geometrical relations between different $H_1$ and $H_2$ in $\Theta$. The paper is aimed to give a flavor of a rather new subject in a short and concentrated manner.

Keywords and phrases: Variety of algebras, free algebra, algebraic (logical) geometry in variety, geometrically (logically) equivalent algebras.

MSC: 08C05, 08B20

Received: 08.07.2007

Language: English



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024