RUS  ENG
Full version
JOURNALS // Journal of the Belarusian State University. Mathematics and Informatics // Archive

Journal of the Belarusian State University. Mathematics and Informatics, 2022 Volume 1, Pages 66–74 (Mi bgumi178)

Discrete mathematics and Mathematical cybernetics

An upper bound on binomial coefficients in the de Moivre – Laplace form

S. V. Agievich

Research Institute for Applied Problems of Mathematics and Informatics, Belarusian State University, 4 Niezaliežnasci Avenue, Minsk 220030, Belarus

Abstract: We provide an upper bound on binomial coefficients that holds over the entire parameter range an whose form repeats the form of the de Moivre – Laplace approximation of the symmetric binomial distribution. Using the bound, we estimate the number of continuations of a given Boolean function to bent functions, investigate dependencies into the Walsh – Hadamard spectra, obtain restrictions on the number of representations as sums of squares of integers bounded in magnitude.

Keywords: binomial coefficient; de Moivre – Laplace theorem; Walsh – Hadamard spectrum; bent function; sum of squares representation.

UDC: 519.118

Received: 20.01.2022
Revised: 18.02.2022
Accepted: 21.02.2022

DOI: 10.33581/2520-6508-2022-1-66-74



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025