RUS  ENG
Full version
JOURNALS // Journal of the Belarusian State University. Mathematics and Informatics // Archive

Journal of the Belarusian State University. Mathematics and Informatics, 2023 Volume 2, Pages 28–34 (Mi bgumi431)

Mathematical logic, Algebra and Number Theory

On an open problem in the theory of modular subgroups

L. Aming-Minga, G. Wenbina, I. N. Safonovab, A. N. Skibac

a Hainan University, 58 Renmin Avenue, Haikou 570228, Hainan Province, China
b Belarusian State University, 4 Niezaliezhnasci Avenue, Minsk 220030, Belarus
c Francisk Skorina Gomel State University, 104 Savieckaja Street, Gomiel 246028, Belarus

Abstract: Let $G$ be a finite group. Then a subgroup $A$ of group $G$ is said to be modular in $G$ if $(i) \langle X,A\cap Z\rangle=\langle X,A\rangle\cap Z$ for all $X\leq G, Z\leq G$ such that $X\leq Z$, and $(ii)\langle A,Y\cap Z\rangle=\langle A,Y\rangle\cap Z$ for all $Y\leq G, Z\leq G$ such that $A\leq Z$. We obtain a description of finite groups in which modularity is a transitive relation, that is, if $A$ is a modular subgroup of $K$ and $K$ is a modular subgroup of $G$, then $A$ is a modular subgroup of $G$. The result obtained is a solution to one of the old problems in the theory of modular subgroups, which goes back to the works of A. Frigerio (1974), I. Zimmermann (1989).

Keywords: finite group; modular subgroup; submodular subgroup; $M$-group; Robinson complex.

UDC: 512.542

Received: 27.02.2023
Revised: 03.05.2023
Accepted: 02.06.2023

Language: English

DOI: 10.33581/2520-6508-2023-2-28-34



© Steklov Math. Inst. of RAS, 2024