RUS  ENG
Full version
JOURNALS // Chebyshevskii Sbornik // Archive

Chebyshevskii Sb., 2021 Volume 22, Issue 3, Pages 457–463 (Mi cheb1087)

BRIEF MESSAGE

Finite groups with $OS$-propermutable subgroups

E. V. Zubei

Brest State A. S. Pushkin University (Belarus, Brest)

Abstract: A subgroup $A$ of a group $G$ is called $OS$-propermutable in $G$ if there is a subgroup $B$ such that $G = N_G(A)B$, $AB$ is a subgroup of $G$ and the subgroup $A$ permutes with all Schmidt subgroups of $B$. In this situation, the subgroup $B$ is called $OS$-prosupplement to $A$ in $G$.
In this paper, we proved the $p$-solubility of a finite group $G$ such that a Sylow $p$-subgroup of $G$ is $OS$-propermutable in $G$, where $p>5$.

Keywords: finite group, $p$-soluble group, $OS$-propermutable subgroup, Schmidt subgroup, seminormal subgroup.

UDC: 512.542

Received: 31.05.2021
Accepted: 20.09.2021

DOI: 10.22405/2226-8383-2018-22-3-457-463



© Steklov Math. Inst. of RAS, 2024