Abstract:
We study here polyadic Liouville numbers, which are involved in a series of recent papers.
The canonic expansion of a polyadic number $\lambda$ is of the form $$ \lambda= \sum_{n=0}^\infty a_{n} n!, a_{n}\in\mathbb{\mathrm{Z}}, 0\leq a_{n}\leq n.$$ This series converges in any field of $p-$ adic numbers $ \mathbb{\mathrm{Q}}_p $.
We call a polyadic number $\lambda$ a polyadic Liouville number, if for any $n$ and $P$ there exists a positive integer $A$ such that for all primes $p$, satisfying $p\leq P$ the inequality $$\left|\lambda -A \right|_{p}<A^{-n}$$ holds.
Let $k\geq 2$ be a positive integer. We denote for a positive integer $m$ $$\Phi(k,m)=k^{k^{\ldots^{k}}}$$ Let $$n_{m}=\Phi(k,m)$$ and let $$\alpha=\sum_{m=0}^{\infty}(n_{m})!.$$ Theorem 1.For any positive integer$k\geq 2$and any prime number$p$the series$\alpha$converges to a transcendental element of the ring$\mathbf{Z}_p.$In other words, the polyadic number$\alpha$is globally transcendental.