RUS  ENG
Full version
JOURNALS // Chebyshevskii Sbornik // Archive

Chebyshevskii Sb., 2021 Volume 22, Issue 5, Pages 354–358 (Mi cheb1140)

This article is cited in 1 paper

BRIEF MESSAGE

Refinement of Bernstein–Nikolskii constant for the sphere with Dunkl weight in the case of octahedron group

D. V. Gorbacheva, N. N. Dobrovol'skiiab, I. A. Martyanova

a Tula State University (Tula)
b Tula State Lev Tolstoy Pedagogical University (Tula)

Abstract: We continue the study of the sharp Bernstein–Nikolskii constants for spherical polynomials in the space $L^{p}(\mathbb{S}^{d})$ with the Dunkl weight. We consider the model case of the octahedral reflection group $\mathbb{Z}_{2}^{d+1}$ and weight $\prod_{j=1}^{d+1}|x_{j}|^{2\kappa_{j}} $ when the explicit form of the Dunkl intertwining operator is known. We show that for $\min \kappa=0$ the multidimensional problem is reduced to the one-dimensional problem for the Gegenbauer weight, otherwise not.

Keywords: spherical polynomial, reproducing kernel, Dunkl weight, Bernstein–Nikoskii constant.

UDC: 517.5

Received: 15.09.2021
Accepted: 05.12.2021

DOI: 10.22405/2226-8383-2021-22-5-354-358



© Steklov Math. Inst. of RAS, 2025