RUS  ENG
Full version
JOURNALS // Chebyshevskii Sbornik // Archive

Chebyshevskii Sb., 2022 Volume 23, Issue 1, Pages 45–52 (Mi cheb1154)

Integer polynomials and Minkowski's theorem on linear forms

V. I. Bernika, I. A. Korlyukovab, A. S. Kudina, A. V. Titovaa

a Institute of Mathematics NAS Belarus (Minsk)
b Grodno State University (Grodno)

Abstract: In paper Minkowski's theorem on linear forms [1] is applied to polynomials with integer coefficients
\begin{align} P(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0 \end{align}
with degree $degP = n$ and height $H(P)=\max_{0 \le i \le n} |a_i|$. Then, for any $x \in [0,1)$ and a natural number $Q > 1$, we obtain the inequality
\begin{align} |P(x)| < c_1(n) Q ^{-n} \end{align}
for some $P(x), H(P) \leq Q$. Inequality (4) means that the entire interval $[0,1)$ can be covered by intervals $I_i, i = 1, 2, \ldots$ at all points of which inequality (4) is true. An answer is given to the question about the size of the $I_i$ intervals. The main result of this paper is proof of the following statement.
For any $v$, $0 \leq v < \frac{n+1}{3}$, there is an interval $J_k$, $k = 1, \ldots, K$, such that for all $x \in J_k$, the inequality (4) holds and, moreover,
\begin{align*} c_2 Q^{-n-1+v} < \mu J_k < c_3 Q^{-n-1+v}. \end{align*}


Keywords: diophantine approximation, Lebesgue measure, Minkowski's theorem.

UDC: 511.42

Received: 07.08.2021
Accepted: 27.02.2022

DOI: 10.22405/2226-8383-2022-23-1-45-52



© Steklov Math. Inst. of RAS, 2024