RUS  ENG
Full version
JOURNALS // Chebyshevskii Sbornik // Archive

Chebyshevskii Sb., 2022 Volume 23, Issue 3, Pages 19–36 (Mi cheb1194)

Measure estimate for $p$-adic Diophantine approximation

N. V. Budarina

Dundalk Institute of Technology (Dundalk, Ireland)

Abstract: A quantitative estimate for the measure of the set of $p$-adic numbers for which the inequality $|P(x)|_p<Q^{-w}$ for $w>3n/2+2$ has a solution in integral polynomials P of degree n and of height $H(P)$ at most $Q\in\mathbb{N}$, is established.

Keywords: Metric Diophantine approximation, $p$-adic numbers, Sprindzuk theorem.

UDC: 511.42

Received: 25.05.2021
Accepted: 14.09.2022

Language: English

DOI: 10.22405/2226-8383-2022-23-3-19-36



© Steklov Math. Inst. of RAS, 2024