RUS  ENG
Full version
JOURNALS // Chebyshevskii Sbornik // Archive

Chebyshevskii Sb., 2022 Volume 23, Issue 3, Pages 156–168 (Mi cheb1203)

Distribution of products of shifted primes in arithmetic progressions with increasing difference

Z. Kh. Rakhmonov

A. Dzhuraev Institute of Mathematics (Dushanbe)

Abstract: We obtain an asymptotic formula for the number of primes $p\leq x_1$, $p\leq x_2$ such that $p_1(p_2+a)\equiv l \pmod q$ with $q\leq x^{\mathrm{ae}_0}$, $x_1\geq x^{1-\alpha}$, $x_2\geq x^{\alpha}$,
$$\mathrm{ae}_0=\frac{1}{2.5+\theta+\varepsilon}, \alpha\in \left[(\theta+\varepsilon)\frac{\ln q}{\ln x}, 1-2.5\frac{\ln q}{\ln x}\right],$$
where $\theta=1/2$, if $q$ is a cube free and $\theta=\frac{5}{6}$ otherwise. This is the refinement and generalization of the well-known formula of A.A.Karatsuba.

Keywords: Dirichlet character, shifted primes, short sum of characters with primes.

UDC: 511.32

Received: 18.07.2022
Accepted: 14.09.2022

DOI: 10.22405/2226-8383-2022-23-3-156-168



© Steklov Math. Inst. of RAS, 2025