Abstract:
In this paper proved asymptotic formula $$ R(n)=\sum\limits_{n=p_1+p_2}\ln p_1\ln p_2=2n\prod\limits_{p>2}\frac{p(p-2)}{(p-1)^2}\prod\limits_{\genfrac{}{}{0pt}{}{p\setminus n}{ p>2}}\frac{p-1}{p-2}+O(n^{1-2\delta}) $$ for all even $n\leq N,$ with the exception can of at most $E(N)<N^{1-\delta}$ values of $n$. Here $N$ is sufficiently large natural number, $p_1$, $p_2$, $p_3$ — are prime numbers, $\delta$ ($0<\delta<1$) is small positive constant. In prove used of Generalized Rieman Hypothesis.